
2019-09-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.
hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Conditional statements

2
Conditional statements

Outline

• In this lesson, we will:

– Describe the need for executing code conditionally

– Describe the flow chart and emphasize the purpose of flow charts

– Describe the conditional statement

• The absolute-value and max functions

– Look at multiple conditional statements

• Clipping and the tent function

– Look at a simplification if there is no code to run if the statement is false

• The sinc function

– Finally, concluding with a simulation of the operational amplifier

3
Conditional statements

Conditional statements

• In programming, we can conditionally execute code if some
condition—a Boolean-valued statement—is satisfied (i.e., true)

4
Conditional statements

Conditional statements

• There are two approaches in computer science to conditional
statements:

2019-09-18

2

5
Conditional statements

Conditional statements

• Many algorithms and mathematical formulas require that some
condition be checked, and the code that is executed may differ based
on the outcome of the condition

– Consider the absolute value function:

def 0

0

x x
x

x x

6
Conditional statements

Block diagrams and flow charts

• For those programmers who are wondering

“Why are we bothering with flow charts? Let’s just do this now…”

• Flow charts and block diagrams are core to engineering:

– Solutions for larger systems are broken up into steps, which step can be
solved individually:

7
Conditional statements

Block diagrams and flow charts

• At the time of writing this, this author had to come up with an
algorithm to find the extreme values of a function correct to the
highest possible floating-point precision

• While not so formally, the problem was broken into:

– Appropriate sampling

– Extrema detection

– Application of quadratic optimization to
localize each extrema

– Application of a golden-mean search to
further localize each extrema

– Return the largest in absolute value

8
Conditional statements

Conditional statements

• In order to execute code only if some condition is satisfied or not, we
use a conditional statement:

if (Boolean-valued condition) {

// The consequent block or body of statements

// - to be executed if the condition is true

} else {

// The alternative block or body of statements

// - to be executed if the condition is false

}

• Even though a conditional statement may have many statements
within it, the entire structure is referred to as a conditional
statement

2019-09-18

3

9
Conditional statements

Conditional statements

• We represent the condition with a diamond:

if (Boolean-valued condition) {

The consequent block of statements

- to be executed if the condition is true

} else {

The alternative block of statements

- to be executed if the condition is false

}

• The alternative consequences are labeled

– The possibility of multiple statements

are represented with additional bars

10
Conditional statements

The absolute-value function

• Going back to the absolute-value function, the condition is “Is x ≥ 0?”

double abs(double x) {

if (x >= 0.0) {

return x;

} else {

return –x;

}

}

11
Conditional statements

Using complementary operators

• If we use the complementary comparison operator, the consequent
and alternative bodies are swapped:

double abs(double x) {

if (x < 0.0) {

return –x;

} else {

return x;

}

}

double abs(double x) {
if (x >= 0) {

return x;
} else {

return –x;
}

}

12
Conditional statements

Unit step function

• The unit step function is a function defined as:

• Implement this function with the identifier unit_step and test it in

main by printing out the results for three values

def 1 0

0 0

x
u x

x

2019-09-18

4

13
Conditional statements

The max function

• As a second example, the maximum of two values is also based on a
simple condition:

double max(double x, double y) {

if (x >= y) {

return x;

} else {

return y;

}

}

def

max ,
x x y

x y
y x y

14
Conditional statements

Maximum of three

• Implement a function finding the maximum of three values:

double max(double x, double y, double z);

• Follow these steps:

– State your solution in English

– Draw a flow chart

– Write some tests

– Write the function definition

• What are the appropriate tests?

– The easiest is to try all permutations of 1.0, 2.0 and 3.0, the maximum
of which in all cases should always be 3.0

15
Conditional statements

Clipping signals

• In engineering, signals (values) often cannot exceed certain bounds

– If a signal x is greater in absolute value than some bound b, the bound is
returned

– If x > b, return b;

– Otherwise:

• If x < –b, return –b,

• Otherwise, return x

16
Conditional statements

Clipping signals

• Implementing this, we have:

double clip(double x, double b) {

if (x > b) {

return b;

} else {

if (x < -b) {

return –b;

} else {

return x;

}

}

} Once a return statement is executed,
no subsequent statements in the function are executed

2019-09-18

5

17
Conditional statements

Clipping signals

• If a conditional statement appears within either block of another
conditional statement, we say that the statements are “nested”

double clip(double x, double b) {

if (x > b) {

return b;

} else {

if (x < -b) {

return –b;

} else {

return x;

}

}

}

18
Conditional statements

Clipping signals

• If the alternative block is itself a conditional statement, we can
beautify the code making it easier to read:

– This is called an else-if statement within the conditional statement

double clip(double x, double b) {

if (x > b) {

return b;

} else if (x < -b) {

return –b;

} else {

return x;

}

}

19
Conditional statements

Clipping signals

• Most problems have multiple solutions:

– If |x| > b,

• If x > 0, return b,

• Otherwise, return –b;

– Otherwise, return x.

20
Conditional statements

Clipping signals

• Implementing alternative version, we have:

double clip(double x, double b) {

if (abs(x) > b) {

if (x > 0) {

return b;

} else {

return –b;

}

} else {

return x;

}

}

2019-09-18

6

21
Conditional statements

Cascading conditional statements

• Such a sequence of if—else-if—··· statements is referred to as
cascading conditional statements

double clip(double x, double b) {

if (x > b) {

return b;

} else if (x < -b) {

return –b;

} else {

return x;

}

}

Martin Püschel, Song Khon Waterfall

22
Conditional statements

The tent function

• A tent function is defined as:

double tent(double x) {

if (x <= -1.0) {

return 0.0;

} else if (x <= 0.0) {

return x + 1.0;

} else if (x <= 1.0) {

return 1.0 - x;

} else {

return 0.0;

}

}

• What would the flow chart look like?

def

0 1

1 1 0
tent

1 0 1

0 1

x

x x
x

x x

x

23
Conditional statements

Cascading conditional statements

• Cascading conditional statements are represented by this flow chart

– The alternative if complementary to all other consequences

double tent(double x) {

if (x <= -1.0) {

return 0.0;

} else if (x <= 0.0) {

return x + 1.0;

} else if (x <= 1.0) {

return 1.0 - x;

} else {

return 0.0;

}

}

24
Conditional statements

Conditions are simply statements

• We can also use the double abs(…) function instead:
double tent(double x) {

if (abs(x) >= 1.0) {

return 0.0;

} else if (x <= 0.0) {

return x + 1.0;

} else {

return 1.0 - x;

}

}

or even
double tent(double x) {

if (abs(x) >= 1.0) {

return 0.0;

} else {

return 1.0 - abs(x);

}

}

2019-09-18

7

25
Conditional statements

How not to use cascades

• Novice programmers sometimes want to emphasize the conditional
checks:

if (x >= 0) { if (x == 0) {

// Do something... // Do something...

} else if (x < 0) { } else if (x != 0) {

// Do something else... // Do something else...

} }

• Don’t do this:

– The last condition is complementary to the first

– Experienced programmers reading this will be confused

• They expect that there are some values of x that satisfy neither condition

– Maintenance becomes more difficult

26
Conditional statements

Assertions

• If mission-critical software requires you to be certain someone
doesn’t accidentally change the conditions, this is acceptable:

#include <cassert>

if (x < -1) {

// Do something...

} else if (x <= 1) {

// Do something else...

} else {

assert (x > 1);

// Do something else, yet again...

}

• assert
– At runtime, this statement executes when the condition is false and

prints to console

27
Conditional statements

Common errors with cascades

• Consider this code:
double square_wave(double x) {

if (x <= -1.0) {

return 0.0;

} else if (x < 0.0) {

return -1.0;

} else if (x > 0.0) {

return 1.0;

} else if (x >= 1.0) {

return 0.0;

} else {

assert (0.0 == x);

return 0.0;

}

}

• What is the error in this cascade?

28
Conditional statements

No alternative statement block

• If there is nothing to be done if the condition is false, this can be
reduced to:

if (Boolean-valued condition) {

The consequent block of statements

- to be executed if the condition is true

}

2019-09-18

8

29
Conditional statements

The sinc function

• The cardinal sine or sinc function is defined as

• An implementation is:
double sinc(double x) {

// Deal with a special case when x = 0:

if (0.0 == x) {

return 1.0;

}

// The general case

return std::sin(3.1415926535897932*x)/

(3.1415926535897932*x);

}

def

1 0

sinc sin
0

x

x x
x

x

30
Conditional statements

Boolean-valued functions

• Conditions need not be conditional operators:

bool is_divsible(int m, int n);

// Is the argument 'm' divisible by the argument 'n'?

// - If the remainder is zero, 'm' is divisible by 'n',

// otherwise, it is not.

bool is_divsible(int m, int n) {

return ((m % n) == 0);

}

31
Conditional statements

Boolean-valued functions

• We can then use this in a conditional statement:

int factor_out_bad_luck_once(int n);

int factor_out_bad_luck_once(int n) {

if (is_divisible(n, 13)) {

return n/13;

} else {

return n;

}

}

32
Conditional statements

Recursive function calls

• Recall our fast sine function:

– This returns a reasonable approximation if 0 ≤ x ≤ /2

double fast_sin(double x) {

return ((

-0.11073981636184074*x - 0.057385341027109429

)*x + 1.0)*x;

}

• What happens if –/2 ≤ x < 0?

– Recall that sin(–x) = –sin(x) or the equivalent statement sin(x) = –sin(–x)

2019-09-18

9

33
Conditional statements

Recursive function calls

• With the property that sin(x) = –sin(–x), we may proceed as follows:

double fast_sin(double x) {

if (x < 0.0) {

return -fast_sin(-x);

}

return ((

-0.11073981636184074*x - 0.057385341027109429

)*x + 1.0)*x;

}

• This is called a recursive function call

– If fast_sin is called with the argument -0.3, the first condition is true

• This first condition calls fast_sin(-(-0.3)) == fast_sin(3.0),

so now the first condition is false

34
Conditional statements

Summary

• Following this lesson, you now:

– Understand the format of a conditional statement:

• A Boolean-valued condition,

• a consequent block of statements to be executed if the condition is true, and

• an alternative block of statements to be executed if the condition is false

– We used simple, nested and cascading conditional statements to
implement numerous functions

35
Conditional statements

References

[1] Wikipedia

https://en.wikipedia.org/wiki/Conditional_(computer_programming)

36
Conditional statements

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

https://en.wikipedia.org/wiki/Conditional_(computer_programming)

2019-09-18

10

37
Conditional statements

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

